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S T A B I L I T Y  OF A M U L T I L A Y E R E D  C O M P O S I T E  C O N I C A L  S H E L L  

U N D E R  U N I F O R M  E X T E R N A L  P R E S S U R E  

A. N. Andreyev UDC 539.3 

The stability of equziibrium of a layered composite circular conical truncated shell loaded 
with uniform external pressure is investigated. A parametric analysis of  the critical pressure 
intensities is carried out with allowance for the transverse shear, the moment  character of the 
subcritical state of equilibrium, and the subcritical strains. 

1. L inea r i zed  Dif fe ren t ia l  Equa t i ons  of  S t ab i l i t y  of  a M u l t i l a y e r e d  O r t h o t r o p i c  Conica l  
Shell .  We consider an orthotropic circular conical truncated shell of thickness h which consists of m composite 
fibrous layers. Let 2a be the cone angle, s = x I be the distance measured along the generatrix of the cone 
from its top (0 < a ~< s ~< b), and qa = x 2 be the angular coordinate (-Tr ~< T ~< 7r). The Lam~ parameters A1 
and A2 and the curvature radii R1 and R2 of the coordinate lines have the form 

A1 = 1, A2 = ss ina ,  RI = cx~, R1 = s t a n a .  (1.1) 

We confine ourselves to the case where the direction of the orthotropy axes coincides with the direction of the 
coordinate axes, and the structural reinforcement parameters of all the layers of the  shell are independent of 
the angular coordinate qa but can depend on the meridional coordinate s, which is the case, for example, where 
the layers of the shell are reinforced in the circumferential and meridional directions by fibers of constant cross 
section. Assuming that the shell is sufficiently thin, we ignore quantities of order h/R2 compared to unity in 
all equations. 

The stability analysis of the shell is based on the nonclassical equations [1] which take transverse 
shear strains into account. Passing from the tensorial to the physical components and from the covariant to 
the partial derivatives in the. tensor equations [1] and bearing in mind (1.1), we arrive at a closed system 
of linearized differential stability equations of a conical shell. The system comprises the following groups of 
relations: 

- -  Relations of elasticity 

a(k) = a(k)r a(k)~(k) a(k) = a(k)~(k) a(k)~(k) a(k) = a(k).~(k) 
11 11 ~'11 "~ 12 ~ 2 2 '  22 12 ~'11 -{- 22 ~ '22 '  12 33 112, (1.2) 

r(k) = c(k)~(k) ~:(k) = c(k)~(k).  13 11 113 , 23 22 123 , 

- -  The distribution law for variation in the physical components of the displacement vector over the 
thickness of the package of layers 

Ow v~k) z cOw .(k)Tr v~k) (1.3) 
v[k) = u, - z ~ + #i~)r,, = u2 A20cp + 1~22 2, = w, 

f ( z )  - f(hk-1) k-1 f ( h j )  -.~_Df(hj_l), i (k) 
~ = - . ~  + ~  )~ = 1, 2; 

C(~A ) j~l'= %~A 
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vector 
- -  Relations between the  variations in the strains and the physical components  of the displacement 

r 1 [ou2 
22 = A'--2 [ - ~  

1 FOUl 02w 0~rl sin o~(u2 

+ - ~ - - z ~  ~ ~ +.22 -~-+--g~.~+ 

.~(~) f ' (z)  
13 - c(~) ~r~, 

11 

0Z*I 02w , (k) 0~1 0/-L~ ) 0m 0W 

zO2w,(k)o~2 ( ow )] ~ 
A2 0 ~  + ~2~ ~ + sin ~ Ul - z ~ + . ~ ) . ,  + ~ + 

A~ 0~ + ' ~  
1 0 ( v  Ow - - +  

A2 O~ Os' 

1 O(v Ow 

A2 Os 0~2 

(k) f ' (z)  
23 --'= ~ ~2; 

22 

1 0 ~  10w 
A2 0~ A2 0 ~ '  

(1.4) 

- -  Relations between the  variations in the generalized internal forces and the moments in the shell 
surface and the variations in the  internal stresses in its layers 

m hk 

k=l  hk_l 

(1.5) 

k=l ~ +  2p--~-2 t ii--~,22]+ c(t) jdz, fl, A ,p= l ,  2, A@p; 
hk-! 

- -  Differential equations of neutral equilibrium of a conical shell for variations in the generalized forces 
and moments 

OT21 = O, O'~- ( A2T'l) - T22 sin a 0--~- 

02 . 0M22 02M12 
Os 2 (A2Mll) - sin ~ - ~ s  Jr 2 ~ + 

as 0~ (1.6) 

+ A2T,; + A2T1, + T21 -x- + T2, "~- 

O ( Ow O~ 

~_~ 0S21 A2Q1 = O, (A2Sll) - $22 s i n a  + 0--'~-" - 

0T22 + T21 sin c~ + 0 
0~  ~ss (A2T12) = 0, 

1 02M22 sin a OM21 A2T22 
A2 0~ 2 + 2  A---T 0~2 R2 

T22 0w T22 0O) 
A2 0~  + A2 0~ = 0 ,  

0S22 0 
0 ~  + $21 sin (~ + ~ss (A2S12) - A2Q2 = O. 

Here the brackets at the subscripts  of the physical components  of the vectors and the tensors are dropped, 
the tilde sign is used to denote  the  characteristics of the subcritical state, and z is the normal coordinate 
reckoned from the inner shell surface: 

m 

z e [o,h] = t2 [hk-l,~k], 
k=l 

where kth layer of the shell (k = 1, 2 , . . . , m )  corresponds to the interval [ h t - l , h} ]  of variation of this 
coordinate. We write the funct ion f ( z )  in the form 

f (z )  = z 3 - 1.5hz 2, (1.7) 

which corresponds to the quadrat ic  dependence of the transverse shear stress on z [1, 2]. 
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Equations (1.1)-(1.7) constitute the complete system of nonclassical differential equations of the 
stability problem of the conical shell. The order of this system is 12, which implies that six boundary conditions 
should be specified at the boundary of the domain. If the shell is closed in the circumferential direction and 
its ends are rigidly fixed, these conditions require the 27r-periodicity of the solution in the ~2 coordinate and 
vanishing of the generalized displacements at the clamped sections [1, 2]: 

Ow 
W = •S = U l = U 2 = ? r l - - ~ ' 2 = 0  for s = a, s = b. (1.8) 

Equations (1.1)-(1.7) take into account the orthotropy of the deformability properties, the low shear 
rigidity of all or part of the layers, the moment nature of the subcritical state, and the subcritical strains. 
Therefore, they are applicable to analysis of the stability of equilibrium of a thin-walled layered composite 
conical shell for the general loading and boundary conditions. One of the advantages of these equations is 
that their order and structure are independent of the number of shell layers and the structure of the layer 
package, which simplifies the formulation and investigation of the stability problem of a multilayered shell 
as an eigenvalue problem for a linear system of partial differential equations. The coefficients TZ~, O(v/Os, 
and 0~/0~v in this system depend on the parameter of external loads and can be determined by integration 
of the corresponding linear or nonlinear static boundary-value problem. The nonclassical static equations 
of a conical shell can be obtained from the general equations [2] similarly to the derivation of the stability 
equations of the shell. The linearized variant of these equation follows from Eqs. (1.1)-(1.7) if the parametric 
terms denoted by tilde sign are ignored in (1.4) and the fictitious load is replaced by the actual load in (1.6). 
These linearized differential equations are given in Sec. 2. 

To estimate the effect of the transverse shear strains on the critical stability parameters, we use the 
limit passage [1, 2] 

oo (1.9) 

(k = 1, 2 , . . . ,  m and ~ = 1, 2) from Eqs. (1.1)-(1.7) to the classical stability equations of a conical shell. 
We introduce the variables 

s .P Oyl 
x = ~, A = E~'  w = hyl,  Y2 = O x  ' 

u2 = by4, ~rl = E~bh-3ys, ~r2 = E[bh-3y6, 

Ul = by3, 

(1.10) 

~s 2 oM12 A T O w  OCv - Ow OCv = h Ely7 , ( A 2 M 1 1 ) - M 2 2 s i n a +  - - - ~ +  2 ll-~s + A 2 T l l - ~ s  + T 2 1 - ~ + T 2 1 - ~  2 c 

A2Mll = h2bE~y8, A2Tll = hbE~y9, A2T12 = hbE~ylo, A2Sll = h4byll, A2S12 = h4by12, 

where x is the dimensionless independent variable (a/b <<, x <~ 1), P and A are the dimensional and 
dimensionless load parameter, respectively, y = [Yl,Y2,.-. ,Y12] t is the column vector containing the 
dimensionless kinematic and force characteristics of the stress-strain state of the shell, and E~ is the Young's 
modulus of the binding material of the first layer. 

The differential stability equations (1.1)-(1.7) and the boundary conditions (1.8) can be written in 
variables (1.10) in matrix form 

Oy = B(x,  D~)y  + AC(z ,  D~)y; (1.11) A( x, D~ ) -~x 

IIE6,061ly(a/b,~) -- 0, lIE6, O~lly(1, ~) = 0.  (1 .12)  

Here E6 and O8 are the 6 x 6 identity and null matrices; A, B, and C are the 12 x 12 matrices whose elements 
are the polynomials of the differential operator D~, (D~ = 0/0~)  with coefficients depending on the variable 
z. For the nonaxisymmetric subcritical state of equilibrium, the matrix elements of the parametric terms C 
depend also on the angular coordinate ~. The expressions for the elements of matrices A, B, and C are not 
given here in view of their cumbersome form. We only indicate the zero and nonzero columns of the matrix 
C, integrating the numbers of the zero columns into the set K and the numbers of the nonzero columns into 
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the set J [3]. Depending on whether the subcritical strains are taken into account or not, the number  of the 
zero columns of the matr ix  C is equal to 8 or 10: 

J = {1,2,9, 10}, It" = {1 ,2 , . . . ,  12} - J ;  (1.13) 

J = {1,2}, It" = { 1 , 2 , . . . , 1 2 } -  J. (1.14) 

It is worth noting tha t  deletion of the 5th, 6th, 11th, and 12th rows and columns in the (12 • 12) matrices A, 
B, and C results in the corresponding (8 • 8) matrices of the coefficients of the classical system of differential 
equations of the stability problem of a conical shell. This follows from the limit transit ion (1.9), since the 

elements of the above-mentioned rows and columns of the matrices A, B,  and C vanish as c(~ ~ co. 
2. S t a b i l i t y  of  a n  O r t h o t r o p i c  L a y e r e d  Conica l  She l l  U n d e r  U n i f o r m  E x t e r n a l  P r e s s u r e .  

We investigate the stabili ty of a multilayered orthotropic circular conical t runcated rigidly fixed shell loaded 
with a uniform external pressure P.  In this case, the stress-strain state of equilibrium is the axisymmetric 

state, and the  angular component  fi~k) of the displacement vector and the quantities related to it vanish, which 
simplifies the parametr ic  terms of the equations by setting 

0 ~  - O.  ( 2 . 1 )  

The determinat ion of the  stress-strain state of equilibrium of the shell is also simplified and reduces to 
integration of a system of ordinary differential equations for appropriate  boundary conditions. In a linear 
approximation, this sys tem comprises the following groups of relations: 

- -  Relations of elasticity 

5.(k) = a(k);(k) a(k);(k) ~(k) = a(k);(k) • a(D;(k ) ~(k) = c(k);,(k). (2.2) 11 1 1 ~ 1 1  "~" 1 2 c 2 2  , 22 12~11  T 22 ~22 , 13 1 1 1 1 3  , 

- -  The  distr ibut ion law of the physical components of the displacement vector over the thickness of 
the package of layers 

dtb . (k)~. ~k) 
~ k )  = Ul  - -  Z ~ + t i l l  1, = ff~; (2.3) 

- -  Strain-displacement  relations 

g(k) dill d 2t5 ,(k) d~'l 0#~kl ) 
11 : ds -z-~s2s2 + ml  --~-s + ~ ~I' 

(2.4) 
dffJ . (k)~ r ] ff~ z,,(k) f ' ( z )  

z(k) s ina  f i l - Z  +~ tn  1] + R 2  e (k) "22 = A2 -~s - - ,  I13 = ~'1; 
I1 

- -  Relations (1.5) between the generalized internal forces and moments  in the shell surface and the 
internal stresses in its layers; 

- -  Differential equations of equilibrium of the shell for the forces and moments  

L ( A 2 S l l )  - -  822 s i n a  - A 2 Q 1  = O, 
ds 

d. 122 A fl'2  
- -  sin a - = A2P. 

ds R2 

~1 = Pbh-3y4, 

d 
d-"s (A2T11) - ~b22 sin a = 0, 

d 2 
ds 2 (A2/~/11 ) 

The function f ( z )  has the form (1.7). We introduce the variables 

Phyl d~l Pb~3 
s = b x ,  (v= E----~I , 92 = dx '  i l l=  E---~I, 

(2.5) 

(2.6) 

d (A2/1:/11) - sin a = Ph2~)5, = ph2b~6, A 2 T l l  = Phb~17, A 2 S l l  - 
ph4@8 

A21~-Ill ' 

where .~ = [Yl, Y2,..-,Ys] t is the column vector of the dimensionless kinematic  and force characteristics of 
the stress-strain state of the shell, x is the dimensionless independent  variable (a/b <~ x <~ 1), and E~ is the 
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Young's modulus of the binding material of the first layer. 
Using the variables (2.6), we write the system of differential equations of axisymmetric bending of a 

conical shell and the corresponding boundary conditions in matrix form 

~l'(x) = A(x)~;(x) + f(x) ,  ]lE4,04]]{l(a/b) = 0, ]lE4,O411~t(1) = 0. (2.7) 

Here A(x) is an 8 x 8 matrix, E4 and 04 are the 4 x 4 identity and null matrices, and f (x)  is the 8- 
dimensional vector. The expressions for the matrix A(x) and the vector f ( z )  are not given here because of 
their cumbersome form [if necessary, these can be obtained from (1.1), (1.5), (1.7), and (2.2)-(2.7)]. 

A numerical analysis shows that the spectral structure of the matrix A(x) is, on the whole, similar 
to that of the matrix containing the coefficients of the nonclassical system of differential equations of 
axisymmetric bending of a cylindrical shell, which is described in [4]. The strong instability of these differential 
equations, which requires special numerical algorithms to integrate the boundary-value problem of bending, 
shows up in problem (2.7) as well. In the example considered below, the numerical solution of the problem 
was obtained by the invariant imbedding method [5, 6]. 

One avoids integration of the boundary-value problem (2.7) if the stability of a shell is analyzed in 
a simplified formulation where the subcritical strains and the moment nature of the subcritical state of 
equilibrium are ignored. In this approximation, the subcritical angles of rotation of the normal are set equal 
to zero: 

0~ 
~-s -- 0, (2.8) 

while the subcritical forces are determined from the formulas 

iPll = -PR2(1  - a2/s2)/2, 5~22 = -PR2,  (2.9) 

which are obtained by integration of the momentless equations of equilibrium of a conical shell (see, e.g., [7]). 
We emphasize that, in this case, the equalities (2.1) hold rigorously, and the equalities (2.8) and (2.9) are 
the simplifying assumptions. The error introduced by these assumptions into the determination of the critical 
stability parameters is studied below. 

Thus, the characteristics of the subcritical state of equilibrium have been determined and the matrix 
of the parametric terms C has been formed, its elements being independent of the angular variable ~. We 
search for a solution of the boundary-value problem (1.11) and (1.12) in the form of a trigonometric Fourier 
series 

OO 

y =  Y~ yn(x)exp(in~) (2.10) 
n ~ - - O O  

(i = x/Z] -) with vector coefficients yn(x). Obviously, the form of solution (2.10) satisfies the 2~r-periodicity 
condition in the ~ coordinate. Substituting the expansion (2.10) into Eqs. (1.11) and the boundary conditions 
(1.12) and separating the angular variable, we obtain a series of linear boundary-value eigenvalue problems 
for the systems of ordinary differential equations 

y:(x) = dn(x)yn(x ) + ABn(x)yn(x), lIE6, 06[[yn(a/b) = HE6, O611y,(1) = 0. (2.11) 

The elements of the matrices An(x) and Bn(x) can be obtained from the elements of the matrices A, B, and 
C with the use of the transformation 

D~ --+ in. (2.12) 

Since the solution y(x, r of problem (1.11), (1.12) is real, the coefficients yn(x) and y_n(z) of the expansion 
(2.10) are complex conjugate: y_n(x) - On(Z). Therefore, it suffices to consider the boundary-value problems 
(2.11) only for n /> 0. It should be noted that, in the equations of stability (1.11), the odd degrees of the 
operator D~ act on the 4th, 6th, 10th, and 12th components of the vector y, and the even degrees of the 
operator act on other components. With allowance for (2.12), it follows that problems (2.11) reduce to real 
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problems by using the transformation y~ --+ iy~ (p = 4, 6, 10, and 12 enumerates the components of the vector 

Vn). 
The dimensionless critical pressure intensity An0 and the vector function y*, which determines the 

buckling shape of the shell, are calculated from the formulas 

A,, 0 = inf An, y* = y~o(Z) exp (inoT) + fl*o(X ) exp ( - /noT) ,  n>~0 

where An and y*(x) are the minimal eigenvalue and the corresponding vector eigenfunction for the nth 
boundary-value problem (2.11). 

The numerical solution of problems (2.11) was obtained by the method of [3, 5] with the use of the 
orthonormal coordinate system 

f - ~ -  I / z - a/b ) 
Ykj(z)=V~--a]~Pk_l(21_a/b l_e i (k=l, 2,...,L; jeJ) ,  (2.13) 

where Pk(t) are the Legendre polynomials orthogonal in the segment [-1;  1] and ej are the vectors of the 
standard orthonormal basis in R 12. It follows from (1.13) and (1.14) that the coordinate system (2.13) consists 
of 4L or 2L vectors, depending on whether the subcritical strains are taken into account or not. Therefore, to 
determine the eigenvalues and eigenvectors of problems (2.11) by the method of [3, 5], one needs to integrate 
the boundary-value problems for 12 • 4L matrices and solve the algebraic eigenvalue problem for 4L • 4L 
matrices in the first case and to integrate the boundary-value problems for 12 x 2L matrices and solve the 
algebraic eigenvalue problem for 2L x 2L matrices in the second case. The boundary-value problems for matrix 
differential equations were solved by the invariant imbedding method [5], and the QR-algorithm was used in 
combination with reduction of the matrix to the Hessenberg form [8] to determine the eigenvalues. The value 
of L which ensures high accuracy of the result was found by a numerical investigation of the convergence rate 
of the method. The calculations were carried out on an "Elbrus-2" computer. 

3. N u m e r i c a l  Resu l t s .  We introduce the following notation: PI* is the critical pressure found on the 
basis of the classical stability equations of a conical shell without allowing for the subcritical strains and the 
moment nature of the subcritical state of equilibrium, P~ is the critical pressure found on the basis of the 
nonclassical stability equations ignoring these factors, P~ is the critical pressure found on the basis of Eqs. 
(1.11) with inclusion of the moment nature of the subcritical state but ignoring the subcritical strains, and P~ 
is the critical pressure found on the basis of Eqs. (1.11) with inclusion of the moment nature of the subcritical 
state and the subcritical strains. 

Table 1 lists the data ~vhich characterize the convergence rate of the method relative to the parameter L. 
The first column contains the values of this parameter, and the second and third columns contain, respectively, 
the corresponding values of the critical pressure P~ and the number of waves in the circumferential direction 
no. The results were obtained for a two-layered shell whose first (inner) layer was reinforced by fibers of 
constant cross section in the circumferential direction, and whose second layer was reinforced in the meridional 
direction. The shell characteristics are as follows: 

- -  the geometrical parameters are 

a - ~ ' / 8 ,  a/b=0.2 ,  h / b = 0 . 3 3 ,  h l - h 0 - - h 2 - h l = 0 . h h ;  (3.1) 

- -  the mechanical parameters are 

C C C a C ~ C a E1/E  2 = 1 ,  E1/E 1 = E2 /E  2 =0.05,  v ~ = v  2=~, ,  =~ ,~=0 .3 ;  (3.2) 

- -  the structural parameters are 

Wzi = Wz2 = 0.5, Wl = 0.5, w2 z=a/b = 0.9. (3.3) 

Here hk -- hk-1, wk and Wz} are the thickness of the kth layer and the reinforcement intensity in its surface 
and over the thickness [9], and El,  v~, E~,, and v~, (k = 1, 2) are the Young's modulus and the Poisson ratio 
of the binding material and the reinforcing fibers of the kth layer, respectively. The effective rigidities and 
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TABLE I 

no L 102 P~IE{ 

3 0.765 
4 0.723 
5 0.711 
6 0.704 
7 0.704 
8 0.704 
9 0.704 

TABLE 2 

b/h 102P~/E{ 102P~/E~ 102P~/E~ 102P,~/E~ no 

150 

200 

250 

300 
350 

0.390 

0.175 

0.093 
0.054 

0.036 

0.343 
0.163 

0.088 
0.052 

0.035 

0.411 

0.178 

0.092 
0.053 

0.035 

0.432 

0.181 

0.093 

0.053 
0.035 

TABLE 3 

Ea/E  c 102P~/E~ 102P~/E~ 102P~/E~ 102P,~/E{ no 

10 
20 
30 
40 
50 
60 

0.137 
0.175 
0.203 
0.225 
0.246 
0.265 

0.129 
0.163 
0.187 
0.206 
0.224 
0.240 

0.142 
0.178 
0.203 
0.221 
0.238 
0.254 

0.145 
0.181 
0.206 
0.224 
0.241 
0.257 

8 
8 
8 
8 
8 
8 

compliances of the layers were determined from the equations for the structural model of a reinforced layer 
[9]. 

One can see from Table 1 that the process of calculation is stabilized even for L = 6. This value or close 
values of L correspond not only to the parameters (3.1)-(3.3), but also to other values of the shell parameters 
considered below. A further numerical analysis is performed for L = 8. 

Table 2 lists the values of the critical pressure for a two-layered composite shell, whose inner layer is 
reinforced by fibers of constant cross section in the circumferential direction and whose outer layer is reinforced 
in the meridional direction, depending on b/h. The results were obtained for a - ~r/20 and a/b = 0.9; the other 
parameters had the values (3.1)-(3.3). One can see from Table 2 that neglect of the transverse shear leads to 
overestimation of the critical pressure values, and neglect of the moment nature of the subcritical state and 
the subcritical strains results ~n underestimation of the critical pressure values. The relative errors introduced 
into the determination of the critical pressure by ignoring these factors attain a max imum for b/h = 150 and 
they are 12.05, 20.12, and 4.85%, respectively. The effect of  all the parameters under consideration becomes 
weaker as the parameter  b/h increases and almost vanishes for b/h = 350. 

Table 3 lists the values of the critical pressure for a two-layered composite shell, whose inner layer is 
reinforced by fibers of constant cross section in the circumferential direction and whose outer layer is reinforced 
in the meridional direction, depending on the parameter  E " / E  c (E~ = E~ - E a and E~ = E~ - EC). The 
results were obtained for b/h = 200, and the values of o ther  parameters are given in Table 1. It follows from 
Table 3 that ,  as the parameter  E a / E  c increases, which is accompanied by an increase of the transverse shear 
compliance of the shell layers [9], the effect of the transverse shear strains on the values of the critical pressure 
becomes more pronounced, while the effect of the subcritical strains and the moment  nature of the state of 
equilibrium becomes weaker. For example, the relative error introduced in the determination of the critical 
pressure when the transverse shear strains (the moment  na ture  of the subcritical state of equilibrium) are not 
taken into account is 5.84% (10.08%) for E a / E  c = 10 and 9.43% (5.83%) for E a / E  c = 60. It should be noted 
that the weakening of the influence of the moment na ture  of the subcritical state on the critical stability 
parameters for pliable shells with respect to the transverse shear was revealed in [10, 11], where the stability 
of a cylindrical shell under external pressure was studied. 

Table 4 lists the values of the critical pressures P ~ , . . . ,  P ;  for a three-layered composite shell of a 
symmetrical structure consisting of isotropic layers versus the  parameter E1/E2.  The results were obtained 
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TABLE 4 

El~E2 103P~/E1 103P~/E1 103P~/E1 103P~/E1 no 

10 
15 
20 
25 
30 
35 
40 
45 

1.148 
1.106 
1.087 
1.075 
1.066 
1.061 
1.056 
1.053 

0.863 
0.755 
0.684 
0.627 
0.579 
0.542 
0.505 
0.471 

0.993 
0.866 
0.780 
0.709 
0.649 
0.604 
0.562 
0.520 

1.008 
0.879 
0.790 
0.718 
0.656 
0.611 
0.568 
0.525 

TABLE 5 

b/h 103P~/E1 103P~/E1 103P~/E1 103P~/E1 no 

15 
20 
25 
30 
35 

1.487 
0.659 
0.345 
0.199 
0.133 

0.453 
0.286 
0.189 
0.128 
0.095 

0.485 
0.301 
0.197 
0.132 
0.097 

0.491 
0.305 
0.199 
0.134 
0.098 

for the following parameters: 

b a ~r El _ 1, tl = t3 = 0.1h, t2 = 0.8h, vl = v2 = v3 = 0.3. (3.4) ~=50, ~=0.7, ~-10, E3 

Here Ek, vk, and tk are the Young's modulus, the Poisson ratio, and the thickness of the kth layer, respectively. 
Table 4 shows that the omission of the transverse shear leads to overestimation of the critical pressures and the 
omission of the moment  nature of the subcritical state and the subcritical strains results in underestimation 
of the critical pressures. The relative error introduced into the determination of the critical pressure when the 
transverse shear is ignored increases from 24.82 to 55.27% as the parameter  El~E2 increases from 10 to 45. 
This great error shows that  it is necessary to take into account the transverse shear in solving the stability 
problems of shells with significantly different rigidities of the layers. When the moment nature of the subcritical 
state and the subcritical strains are not taken into account, the relative errors decrease, respectively, from 
15.06 and 1.51% to 10.40 and 0.96% as the parameter El~E2 increases from 10 to 45. 

Table 5 lists the values of the critical pressures for a three-layered composite shell of a symmetrical 
structure consisting of homogeneous isotropic layers versus b/h. The results {vere obtained for a/b = 0.2 
and El~E2 = 20 with the values of other parameters given by (3.4). As in the previous case, of the three 
factors investigated, namely, the transverse shear strains, the moment  nature of the subcritical state, and 
the subcritical strains, the transverse shear strains are the most important  factor. Indeed, the relative error 
when the shear is ignored is 69.54%, while the errors when the moment nature  of the subcriticM state and the 
subcritical strains are not taken into account are 7.06 and 1.24%, respectively, for b/h = 15. As the parameter 
b/h increases, the relative errors due to neglect of these factors decrease and they are 28.57, 2.10, and 1.03%, 
respectively, for b/h = 35. 

We note that  the resulting relationships between the critical pressure and the moment  nature of the 
subcritical state and the transverse shear are similar to those obtained in [10] for a cylindrical shell. 
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